Catch them if you can!

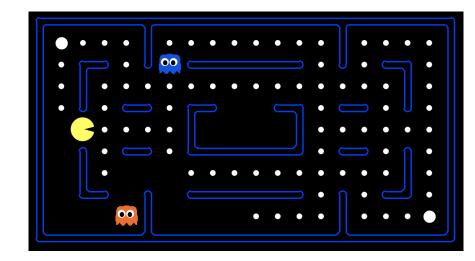
Juhi Chaudhary* and Umang Bhaskar STCS, TIFR Mumbai

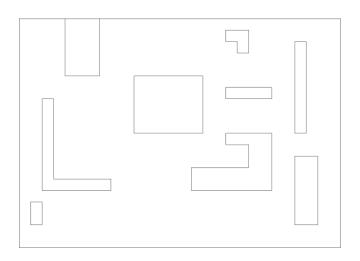
STCS Vigyan Vidushi 2024

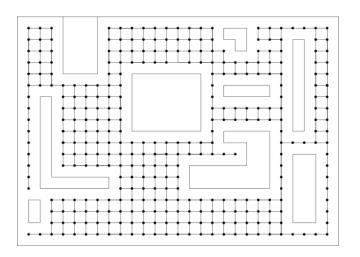
Course: Algorithms on Graphs

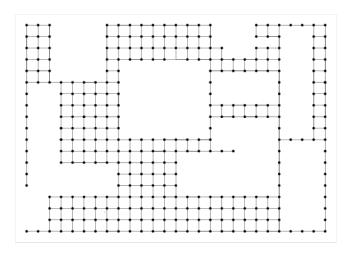
July 24, 2024

Thanks, Harmender, for introducing me to the problem and giving me your slides!









A simple, undirected, connected, and finite graph.

A simple, undirected, connected, and finite graph.

Players

Two players: 1 cop and 1 robber.

A simple, undirected, connected, and finite graph.

Players

Two players: 1 cop and 1 robber.

A simple, undirected, connected, and finite graph.

Players

Two players: 1 cop and 1 robber.

Rules of the game

▶ Cop place themselves on some vertex of the graph.

A simple, undirected, connected, and finite graph.

Players

Two players: 1 cop and 1 robber.

- ▶ Cop place themselves on some vertex of the graph.
- Robber enters on a vertex.

A simple, undirected, connected, and finite graph.

Players

Two players: 1 cop and 1 robber.

- ▶ Cop place themselves on some vertex of the graph.
- Robber enters on a vertex.
- Cop and robber take alternating turns (moves).

A simple, undirected, connected, and finite graph.

Players

Two players: 1 cop and 1 robber.

- ▶ Cop place themselves on some vertex of the graph.
- Robber enters on a vertex.
- Cop and robber take alternating turns (moves).
- In a move, a player can move to its closed neighborhood.

```
For a vertex v, its closed neighborhood is \{v\} \cup \{u : uv \text{ is an edge in } G\}.
```

A simple, undirected, connected, and finite graph.

Players

Two players: 1 cop and 1 robber.

Rules of the game

- Cop place themselves on some vertex of the graph.
- Robber enters on a vertex.
- Cop and robber take alternating turns (moves).
- In a move, a player can move to its closed neighborhood.

```
For a vertex v, its closed neighborhood is \{v\} \cup \{u : uv \text{ is an edge in } G\}.
```

Winning

 Cop wins if cop and robber occupy the same vertex after some move. (Capture)

A simple, undirected, connected, and finite graph.

Players

Two players: 1 cop and 1 robber.

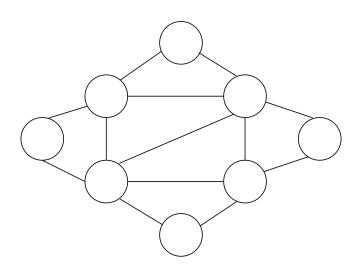
Rules of the game

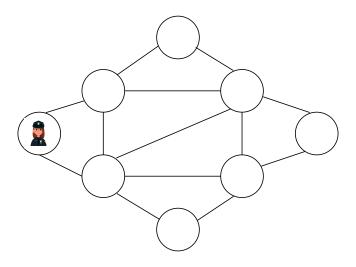
- Cop place themselves on some vertex of the graph.
- Robber enters on a vertex.
- Cop and robber take alternating turns (moves).
- In a move, a player can move to its closed neighborhood.

```
For a vertex v, its closed neighborhood is \{v\} \cup \{u : uv \text{ is an edge in } G\}.
```

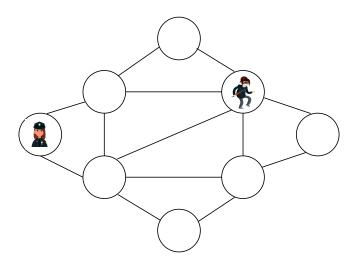
Winning

- Cop wins if cop and robber occupy the same vertex after some move. (Capture)
- Robber wins if it can evade the cop indefinitely.

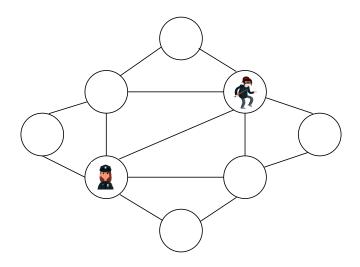




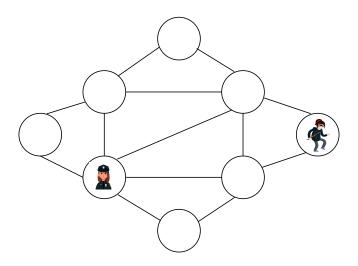
Cop enters the graph



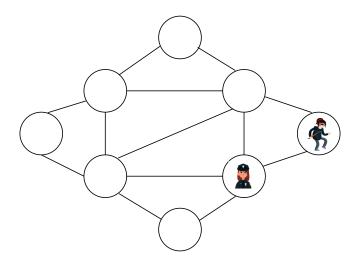
Robber enters the graph



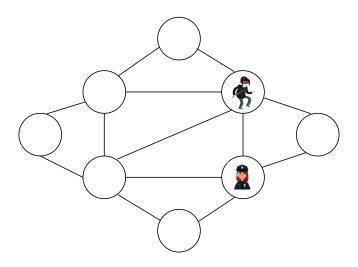
Cop moves



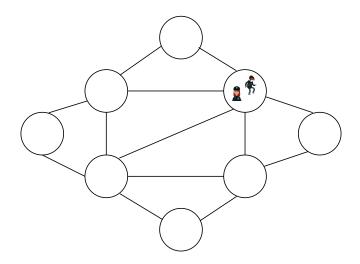
Robber moves



Cop moves



Robber moves



CAPTURE!

Cop-win graph

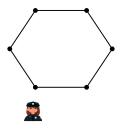
If the cop has a winning strategy!

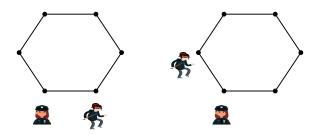
Cop-win graph

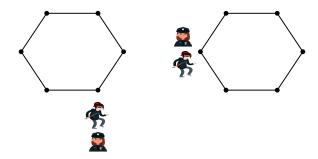
If the cop has a winning strategy! It can always capture the robber, no matter how the robber chooses to move.

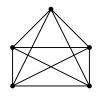
Robber-win graph

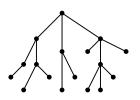
If the robber can evade the cop forever, no matter how the cop chooses to move!

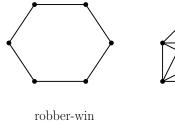


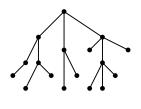




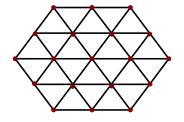








cop-win cop-win



What can you say about this graph?

When is a robber sure to be captured?

When is a robber sure to be captured?

The graph should have a Pitfall!

When is a robber sure to be captured?

The graph should have a Pitfall!

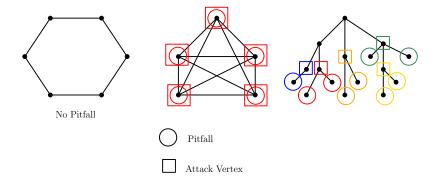
A pitfall is a vertex whose closed neighborhood is entirely covered by another vertex, called the attack vertex.

When is a robber sure to be captured?

The graph should have a Pitfall!

A pitfall is a vertex whose closed neighborhood is entirely covered by another vertex, called the attack vertex.

Definition: A pair of vertices (p, a) is considered a *pitfall* together with its *attack vertex* if $N(p) \cup \{p\} \subseteq N(a)$.



Lemma: For a graph to be cop-win, it has to contain a pitfall.

Lemma: For a graph to be cop-win, it has to contain a pitfall.

Is the converse true?

Theorem: Adding a pitfall does not change the winner!

Theorem: Adding a pitfall does not change the winner!

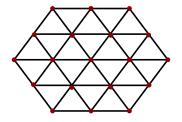
Corollary: Removing a pitfall does not change the winner!

Characterization of cop-win graphs

Theorem: G is a cop-win graph iff by successively removing pitfalls (in any order), G can be reduced to a single vertex.

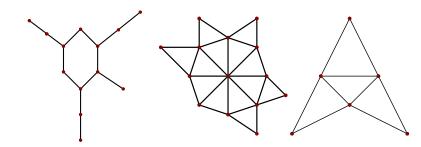
Characterization of cop-win graphs

Theorem: G is a cop-win graph iff by successively removing pitfalls (in any order), G can be reduced to a single vertex. Otherwise, the graph is robber-win.



What can you say about this graph now?

Cop-win or Robber-win?



In case the graph is a robber-win graph, what is the minimum number of cops required to guarantee the capture of the robber? In case the graph is a robber-win graph, what is the minimum number of cops required to guarantee the capture of the robber?

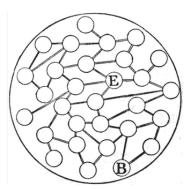
Cop number of the graph denoted by c(G)!

Some History

- ▶ Quillot in his Ph.D. thesis (1978).
- Independently by Nowakowski and Winkler (1983).
- Cop number introduced by Aigner and Fromme (1984).
- ▶ A detailed survey including some variants: Bonato and Nowakiwski (2011).

Prehistory

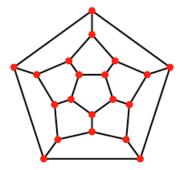
In the book *Amusements in Mathematics*, published in 1917, Henry Ernest Dudeney asked the following question.



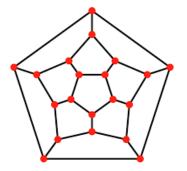
How many cops are needed to capture the robber in a cycle?

How many cops are needed to capture the robber in a cycle? Why? Explain your strategy!

What about this graph?

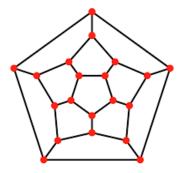


What about this graph?



Note that it has no pitfall, so $cop(dodecahedron) \geq 2$.

What about this graph?



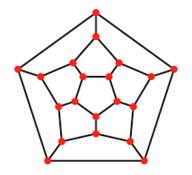
Note that it has no pitfall, so $cop(dodecahedron) \ge 2$. Also, $cop(dodecahedron) \le 20$.

Are 2 cops sufficient?

Are 2 cops sufficient?

NO because of the upcoming theorem.

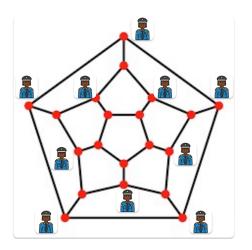
Theorem: Let G be a graph with minimum degree at least d which contains no 3-cycles or 4-cycles. Then $c(G) \ge d$.

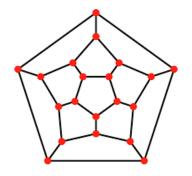


Thus, $3 \le cop(dodecahedron) \le 20$.

How about 10 cops?

How about 10 cops?





Thus, $3 \le cop(dodecahedron) \le 10$.

Are 3 cops sufficient?

Are 3 cops sufficient?

Thanks, Aigner and Fromme.

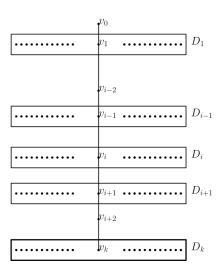
Theorem

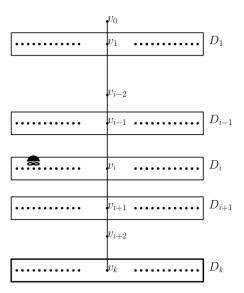
For any planar graph G, $cop(G) \leq 3$.

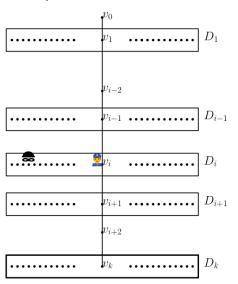
Lemma

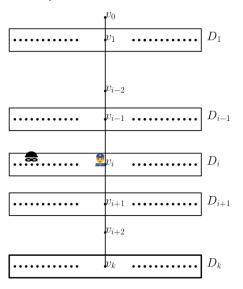
Let G be any graph, and $P = \{u = v_0, v_1, v_2, \dots, v_k = v\}$ be a shortest path between any two vertices u and v.

Then, a single cop C on P can, after a finite number of moves, prevent the robber R from entering P (that is, R will be immediately caught if he moves onto P).

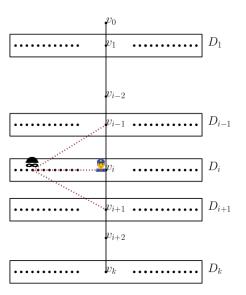




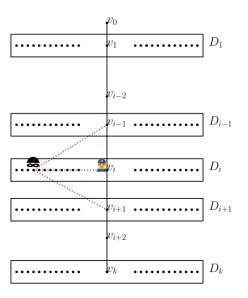




$$d(r,z) \ge d(c,z)$$
 for all $z \in V(P)$ (*)



Guarding a shortest path



Thus, $d(r,z) \ge d(c,z)$ for all $z \in V(P)$ holds throughout.

Brief idea!

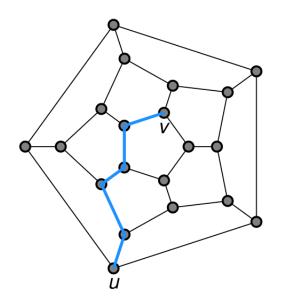
▶ Assign at each stage *i* to *R* a certain subgraph *R_i* called the Robber Territory which contains all vertices which *R* may still "safely" enter.

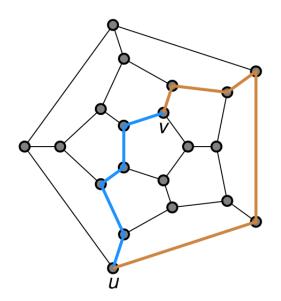
Brief idea!

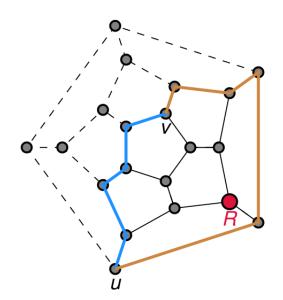
- ► Assign at each stage i to R a certain subgraph R_i called the Robber Territory which contains all vertices which R may still "safely" enter.
- After a finite number of cop-moves, R_i is reduced to $R_{i+1} \subset R_i$.

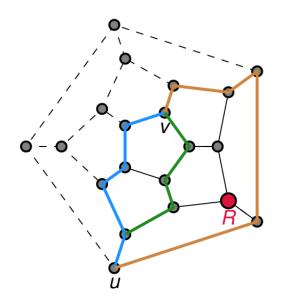
Brief idea!

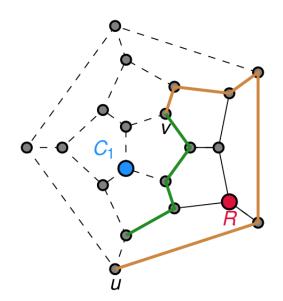
- ► Assign at each stage i to R a certain subgraph R_i called the Robber Territory which contains all vertices which R may still "safely" enter.
- After a finite number of cop-moves, R_i is reduced to $R_{i+1} \subset R_i$.
- Eventually, there is no vertex left for the robber to go.











Are there graphs with unbounded cop number?

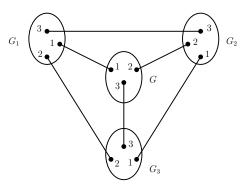
Theorem: To every $k \in \mathbb{N}$ there exists an k-regular graph without 3- or 4-cycles. Hence, for every k, there exists a graph G with $c(G) \ge k$.

Theorem: To every $k \in \mathbb{N}$ there exists an k-regular graph without 3- or 4-cycles. Hence, for every k, there exists a graph G with $c(G) \geq k$.

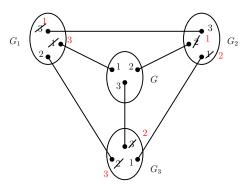
Proof:

- For k = 1, K_2 works.
- ▶ For k = 2, the 5-cycle C_5 works. Note that C_5 is 3-colorable.
- Assume, by induction, that we have an k-regular, 3-colorable graph G without 3- or 4-cycles.
- ▶ Create 3 copies of G, denoted G_1 , G_2 , G_3 , and color them with 3 colors in the same way.
- ▶ Construct a new k + 1-regular graph by:
 - ▶ Joining each vertex in G_1 to the corresponding vertex in G_2 if it is colored 3.
 - ▶ Joining each vertex in G_2 to the corresponding vertex in G_3 if it is colored 1.
 - ▶ Joining each vertex in G_3 to the corresponding vertex in G_1 if it is colored 2.

- After joining, interchange the colors:
 - ightharpoonup Swap colors 3 and 1 in G_1 .
 - Swap colors 2 and 1 in G_2 .
 - ▶ Swap colors 3 and 2 in G_3 .
- The resulting graph is k + 1-regular, without 3- or 4-cycles, and remains 3-colorable.



- ► After joining, interchange the colors:
 - ightharpoonup Swap colors 3 and 1 in G_1 .
 - Swap colors 2 and 1 in G_2 .
 - \triangleright Swap colors 3 and 2 in G_3 .
- The resulting graph is k + 1-regular, without 3- or 4-cycles, and remains 3-colorable.



Meyniel's Conjecture

For any graph G, $cop(G) = O(\sqrt{n})$.

Other Variants

► Cops and Attacking Robbers

Other Variants

- Cops and Attacking Robbers
- ► Lazy Cops and Robbers

Other Variants

- Cops and Attacking Robbers
- ► Lazy Cops and Robbers
- ▶ You guys come up with your own models!!!

Thank You!